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An effective route to spiro-functionalized fused polycyclic derivatives of isoquinoline is described via tan-
dem reaction of isoquinoline, dialkyl acetylenedicarboxylates, and indane-1,3-dione.
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Tandem reactions (TRs) are of paramount importance in the
context of green chemistry as they offer a convenient strategy for
the rapid, elegant, and convergent construction of complex organic
molecules without isolating and purifying the intermediates,
resulting in substantial minimization of waste, labor, time, and
cost.1 Tandem processes lead to skeletal changes rather than
merely functional group transformations. Important classes of
TRs are the Mannich reaction, Diels–Alder reactions of benzyne,
cycloaddition of ketenes, and carbene/nitrene insertion.2–8 There-
fore, TRs have become an increasingly active area of research,
yielding novel chemical scaffolds for drug discovery efforts.

We recently9 reported the formation of novel spiro tetrahydro-
pyrroloquinoline derivatives via the reaction of indane-1,3-dione
with Huisgen zwitterions formed in situ from quinoline and acti-
vated acetylenes via cyclization. As part of our continuing interest
in the construction of novel heterocycles,10–12 we now report the
results of our studies involving the reactions of zwitterions derived
from isoquinoline (1) and dialkyl acetylenedicarboxylates 2 in the
presence of indane-1,3-dione (3), which constitutes a synthesis of
spiro-functionalized tetraalkyl benzoisoquinopyrrolonaphthyri-
dine-tetracarboxylates 4 (Scheme 1).13

The structures of compounds 4a–d were deduced from their
elemental analyses and their IR, 1H NMR, 13C NMR, and single-crys-
tal X-ray analyses. For example, the 1H NMR spectrum of 4a exhib-
ll rights reserved.

: +98 21 82886544.
ited four singlets (d 3.60, 3.75, 3.83, and 3.90) identified as
methoxy protons, along with multiplets for the remaining aliphatic
and aromatic protons. The 1H-decoupled 13C NMR spectrum of 4a
showed 39 distinct resonances which further confirmed the pro-
posed structure. The IR spectrum of 4a displayed characteristic ke-
tone and ester carbonyl bands. The 1H NMR and 13C NMR spectra of
4b–d were similar to those for 4a except for the ester moieties,
which exhibited characteristic resonances in appropriate regions
of the spectrum.

Unambiguous evidence for the structure and stereochemistry of
4a was obtained from a single-crystal X-ray analysis. An ORTEP14

diagram of 4a is shown in Figure 1. There are two molecules of
4a in the unit cell. The stereochemistry deduced from the crystal-
lographic experiment, by analogy can be applied to the other prod-
ucts 4b–d on account of their NMR-spectroscopic similarities.

Although the mechanistic details of the reaction are not known,
a plausible rationalization can be advanced to explain the product
formation (Scheme 2). Presumably, the zwitterionic intermedi-
ate15–17 5 formed from isoquinoline and the dialkyl acetylenedicar-
boxylate, is protonated by 3 to furnish intermediate 6, which is
attacked by carbanion 7, to produce 8. This intermediate is con-
verted into 10 via a 1,3-proton shift and cyclization, which then
undergoes a [2+4] cycloaddition reaction with 5 to produce prod-
uct 4.

In summary, we report a tandem transformation involving iso-
quinoline and dialkyl acetylenedicarboxylates in the presence of
indane-1,3-dione, which affords a new route to the stereoselective
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Scheme 1. Synthesis of compounds 4.

Figure 1. X-ray crystal structure of 4a. ORTEP-III plot;14 arbitrary atom numbering.
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Scheme 2. Proposed mechanism for the formation of compounds 4.
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synthesis of complex spiro compounds. The present procedure has
the advantage that not only is the reaction performed under
neutral conditions, but also the reactants can be mixed without
any prior activation or modification.
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